9947 measured reflections

 $R_{\rm int} = 0.044$

3240 independent reflections

2616 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2-Bis{bis[4-(trifluoromethyl)phenyl]phosphino}ethane

Matthew A. Bork, Aaron M. Krueger, Robin S. Tanke* and James G. Brummer

Department of Chemistry, University of Wisconsin - Stevens Point, Stevens Point, WI 54481, USA

Correspondence e-mail: rtanke@uwsp.edu

Received 28 November 2007; accepted 27 December 2007

Key indicators: single-crystal X-ray study; T = 208 K; mean σ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.162; data-to-parameter ratio = 15.5.

Crystals of the title compound, $C_{30}H_{20}F_{12}P_2$ or R_2PCH_2 - CH_2PR_2 ($R = 4-C_6H_4CF_3$), were inadvertently prepared while attempting to recrystallize a crude sample of trans- $Re(Cl)(N_2)(R_2PCH_2CH_2PR_2)_2$ from diethyl ether. The molecule lies on a center of inversion. One of the rings lies approximately in the P-C-C-P plane; the dihedral angle is 174.53°. The other ring is not quite perpendicular; the dihedral angle is 71.1°. The compound is isostructural with the R = Ph, 4-C₆H₄CH₃ and 4-C₆H₄CH₂CH₃ analogues. It is well known that the basicity of phosphines and diphosphines can be altered by changing the electron-donating ability of R; however, the structural parameters for the title compound do not significantly differ from those of the aforementioned substituted-phenyl compounds.

Related literature

For the synthesis of the title compound, see: Chatt et al. (1985). For the crystal structures of similar 1,2-bis(diphenylphosphino)ethane structures, see: Tiekink (2001); Zeller et al. (2003); Zeller & Hunter (2004). For related literature, see: Allman & Goel (1982); Larson (1970); Nordwig et al. (2006); Streuli (1960); Tolman (1970).

Experimental

Crystal data

•	
$C_{30}H_{20}F_{12}P_2$	$V = 1468.3 (19) \text{ Å}^3$
$M_r = 670.41$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 15.188 (11) Å	$\mu = 0.24 \text{ mm}^{-1}$
b = 5.402 (4) Å	T = 208 K
c = 18.123 (13) Å	$0.40 \times 0.10 \times 0.10$ mm
$\beta = 99.044 \ (9)^{\circ}$	

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2006) $T_{\min} = 0.91, \ T_{\max} = 0.98$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	208 parameters
$wR(F^2) = 0.162$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
3229 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ \AA}^{-3}$

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

RST acknowledges the Small Molecule X-ray Crystallography Summer School hosted by Professor Arnold Rheingold at the University of California - San Diego and the University of Wisconsin - Stevens Point Letters and Science Foundation and Chemistry Department.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2196).

References

- Allman, T. & Goel, R. G. (1982). Can. J. Chem. 60, 716-722.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bruckmann, J. & Kruger, C. (1997). J. Organomet. Chem. 536-537, 465-472.
- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chatt, J., Hussain, W., Leigh, G. J., Modh Ali, H., Pickett, C. J. & Rankin, D. A. (1985). J. Chem. Soc. Dalton Trans. pp. 1131-1136.
- Eisentrager, F., Gothlich, A., Gruber, I., Heiss, H., Kiener, C. A., Kruger, C., Ulrich Notheis, J., Rominger, F., Scherhag, G., Schultz, M., Straub, B. F., Volland, M. A. O. & Hofmann, P. (2003). New J. Chem. 27, 540-550.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- Nordwig, B. L., Ohlsen, D. J., Beyer, K. D., Wruck, A. S. & Brummer, J. G. (2006). Inorg. Chem. 45, 858-867.
- Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Streuli, C. A. (1960). Anal. Chem. 32, 985-987.
- Tiekink, E. R. T. (2001). Z. Kristallogr. 216, 69-70.
- Tolman, C. A. (1970). J. Am. Chem. Soc. 92, 2953-2956.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.
- Zeller, M. & Hunter, A. D. (2004). Private communication (refcode FOGGAK). CCDC, Union Road, Cambridge, England.
- Zeller, M., Lazich, E., Wagner, T. R. & Hunter, A. D. (2003). Acta Cryst. E59, o1721-o1722.

supplementary materials

Acta Cryst. (2008). E64, o421 [doi:10.1107/S1600536807068547]

1,2-Bis{bis[4-(trifluoromethyl)phenyl]phosphino}ethane

M. A. Bork, A. M. Krueger, R. S. Tanke and J. G. Brummer

Comment

1,2-Bis{bis[4-(trifluoromethyl)phenyl]phosphino}ethane was obtained accidently during the recrystallization of *trans*-Re(Cl)(N₂)(R_2 PCH₂CH₂PR₂)₂[R = 4-Ph—CF₃] from diethyl ether. We were interested in preparing this complex in order to measure its luminescent properties and then compare them to those for the analogous R = Ph, 4-Ph-OCH₃, and CH₂CH₃ complexes. Our preliminary results indicate that these complexes show simultaneous emission from two excited levels of different orbital parentage. Our intent is to investigate how changes in diphosphine basicity brought about by variations in R influence the bandshape and lifetimes of these emissions thereby allowing us to assign the excited states responsible for luminescence.

The title compound resides on a center of inversion. It is isostructural to its R = Ph, 4-Ph—CH₃, and 4-Ph—CH₂CH₃ analogues. It is well known that the basicity of phosphines and diphosphines can be altered by changing the electron donating ability of R; however, the structural parameters for the title compound do not significantly differ from the aforementioned phenyl substituted compounds.

A summary of the C—P bond distances, C—P—C bond angles, and sums of the C—P—C angles is given in Table 1 for this work and several related diphosphines that contain aromatic and aliphatic substituents. The title compound has nearly identical geoemtric parameters about phosphorus as the other phenyl diphosphines and there appears to be no experimentally significant trends that parallel the electron donating ability of the *para*-substituent, which follows the order CH₃CH₂> CH₃> H > CF₃ (Nordwig *et al.*, 2006; Allman & Goel, 1982; Tolman, 1970; Streuli, 1960). The aromatic diphosphines display Σ C—P—C values of about 303.5° which indicates a pyramidal arrangement of the bonds about phosphorus. The aliphatic diphosphines are more electron donating with the less sterically demanding R = CH₃ and CH₂CH₃ cases giving rise to lower Σ C—P—C values. The R = CH(CH₃)₂ and C(CH₃)₃ compounds display larger Σ C—P—C values and longer C—P bond distances due to increased space requirements for these bulkier substituents. Substituent effects for the alkyl substituted compounds have been discussed previously (Bruckmann & Kruger, 1997; Eisentrager *et al.*, 2003).

One of the rings lines approximately in the P—C—C—P plane; the dihedral angle is 174.53° . The other ring is not quite perpendicular; the dihedral angle is 71.1° .

Experimental

A non-crystalline sample of $R_2PCH_2CH_2PR_2$ [R = 4-Ph—CF₃] and a crude sample of *trans*-Re(Cl)(N₂)($R_2PCH_2CH_2PR_2$)₂ [R = 4-Ph—CF₃] were prepared according to previously reported methods (Chatt, *et al.*, 1985). Crude *trans*-Re(Cl)(N₂)($R_2PCH_2CH_2PR_2$)₂ was dissolved in a minimum of diethyl ether at 20° C. The yellow-orange solution was filtered and ether was gradually evaporated by passing a slow stream of nitrogen gas through the flask. A mixture of microcrystalline orange solid and pale yellow-orange crystals formed over the course of 4 h. A pale crystal from this mixture was analyzed.

Refinement

Reflections (11) in the vicinity of the beam stop, with $[\sin \theta/\lambda]^2 < 0.01$, were eliminated from the refinement.

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methylene H atoms, and with $U_{iso}(H) = 1.2 U_{eq}$ (C). An extinction correction (Larson, 1970) was applied.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = -x + 2, -y + 2, -z.

1,2-Bis{bis[4-(trifluoromethyl)phenyl]phosphino}ethane

Crystal data	
$C_{30}H_{20}F_{12}P_2$	$F_{000} = 676$
$M_r = 670.41$	$D_{\rm x} = 1.516 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 471 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 15.188 (11) Å	Cell parameters from 4592 reflections
b = 5.402 (4) Å	$\theta = 2.3 - 27.2^{\circ}$
c = 18.123 (13) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 99.044 \ (9)^{\circ}$	T = 208 K
$V = 1468.3 (19) \text{ Å}^3$	Block, colorless
Z = 2	$0.40 \times 0.10 \times 0.10$ mm

Data collection

Bruker SMART APEXII diffractometer	3240 independent reflections
Radiation source: fine-focus sealed tube	2616 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 208 K	$\theta_{\text{max}} = 27.2^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2006)	$h = -19 \rightarrow 19$
$T_{\min} = 0.91, \ T_{\max} = 0.98$	$k = -4 \rightarrow 6$
9947 measured reflections	$l = -23 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.061$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.07P)^2 + 1.82P]$, where $P = (\max(F_0^2, 0) + 2F_c^2)/3$
$wR(F^2) = 0.162$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 0.95	$\Delta \rho_{max} = 0.73 \text{ e } \text{\AA}^{-3}$
3229 reflections	$\Delta \rho_{min} = -0.43 \text{ e} \text{ Å}^{-3}$
208 parameters	Extinction correction: Larson (1970), Equation 22
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 100 (30)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
F1	1.27583 (17)	0.8551 (5)	0.42720 (14)	0.0973
F2	1.22595 (19)	0.5004 (4)	0.40090 (12)	0.0933
F3	1.15394 (18)	0.7552 (7)	0.45867 (12)	0.1188
F4	0.58890 (16)	0.7965 (6)	0.11270 (19)	0.1126
F5	0.56328 (18)	1.1552 (8)	0.0760 (3)	0.1601
F6	0.59438 (18)	1.0822 (8)	0.19080 (19)	0.1525
C1	1.02538 (17)	0.9577 (5)	0.03782 (13)	0.0376
C2	1.06731 (16)	1.0281 (5)	0.19636 (13)	0.0366
C3	1.12029 (18)	0.8196 (5)	0.19746 (14)	0.0432
C4	1.16363 (19)	0.7219 (6)	0.26452 (15)	0.0474
C5	1.15250 (17)	0.8323 (5)	0.33151 (14)	0.0422
C6	1.1999 (2)	0.7337 (7)	0.40384 (16)	0.0566
C7	1.0996 (2)	1.0400 (6)	0.33167 (15)	0.0501
C8	1.05801 (19)	1.1393 (6)	0.26470 (15)	0.0466
C9	0.89383 (17)	1.1273 (5)	0.11969 (14)	0.0375
C10	0.8645 (2)	0.9282 (6)	0.15831 (18)	0.0531
C11	0.7744 (2)	0.8957 (7)	0.16050 (19)	0.0600
C12	0.71295 (19)	1.0603 (6)	0.12370 (17)	0.0530
C13	0.6158 (2)	1.0234 (9)	0.1269 (3)	0.0781
C14	0.7406 (2)	1.2566 (7)	0.08562 (19)	0.0587
C15	0.83094 (19)	1.2916 (6)	0.08420 (17)	0.0488
P1	1.01119 (4)	1.18369 (12)	0.11177 (3)	0.0363
H11	1.0876	0.9429	0.0344	0.0451*
H12	1.0028	0.7998	0.0503	0.0451*
H31	1.1270	0.7433	0.1527	0.0513*
H41	1.2006	0.5845	0.2647	0.0539*
H71	1.0918	1.1122	0.3768	0.0578*
H81	1.0232	1.2810	0.2648	0.0543*
H101	0.9059	0.8154	0.1819	0.0610*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H111	0.7548	0.7643	0.1868	0.0685*
H141	0.6989	1.3674	0.0614	0.0680*
H151	0.8499	1.4260	0.0587	0.0563*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0832 (16)	0.114 (2)	0.0773 (15)	-0.0152 (14)	-0.0410 (12)	0.0092 (14)
F2	0.135 (2)	0.0749 (15)	0.0578 (13)	0.0188 (14)	-0.0231 (13)	0.0109 (11)
F3	0.0998 (19)	0.211 (3)	0.0491 (12)	0.057 (2)	0.0224 (12)	0.0483 (17)
F4	0.0612 (14)	0.128 (2)	0.155 (3)	-0.0417 (15)	0.0383 (15)	-0.065 (2)
F5	0.0438 (14)	0.213 (4)	0.219 (4)	0.0033 (19)	0.0043 (19)	0.058 (3)
F6	0.0792 (17)	0.252 (4)	0.143 (3)	-0.069 (2)	0.0692 (18)	-0.128 (3)
C1	0.0375 (12)	0.0447 (14)	0.0301 (12)	-0.0025 (11)	0.0036 (9)	-0.0012 (10)
C2	0.0352 (12)	0.0416 (13)	0.0321 (11)	-0.0035 (10)	0.0022 (9)	-0.0015 (10)
C3	0.0476 (14)	0.0499 (15)	0.0306 (12)	0.0024 (12)	0.0015 (10)	-0.0059 (11)
C4	0.0480 (15)	0.0504 (16)	0.0419 (14)	0.0086 (12)	0.0012 (11)	-0.0001 (12)
C5	0.0368 (13)	0.0543 (16)	0.0338 (12)	-0.0062 (11)	0.0003 (10)	0.0016 (11)
C6	0.0545 (17)	0.076 (2)	0.0371 (14)	0.0052 (16)	-0.0006 (13)	0.0024 (14)
C7	0.0527 (16)	0.0644 (19)	0.0323 (13)	0.0042 (14)	0.0036 (11)	-0.0087 (12)
C8	0.0488 (15)	0.0506 (16)	0.0396 (14)	0.0089 (12)	0.0043 (11)	-0.0060 (12)
C9	0.0380 (12)	0.0408 (13)	0.0330 (12)	-0.0019 (10)	0.0041 (10)	-0.0020 (10)
C10	0.0447 (15)	0.0549 (18)	0.0584 (17)	-0.0033 (13)	0.0041 (13)	0.0165 (14)
C11	0.0525 (17)	0.066 (2)	0.0627 (19)	-0.0154 (15)	0.0142 (15)	0.0084 (16)
C12	0.0403 (14)	0.068 (2)	0.0514 (16)	-0.0054 (14)	0.0108 (12)	-0.0176 (15)
C13	0.0438 (18)	0.106 (3)	0.087 (3)	-0.011 (2)	0.0157 (18)	-0.029 (2)
C14	0.0437 (16)	0.067 (2)	0.0638 (19)	0.0105 (15)	0.0027 (14)	0.0007 (16)
C15	0.0469 (15)	0.0491 (16)	0.0507 (16)	0.0045 (13)	0.0090 (12)	0.0101 (13)
P1	0.0368 (4)	0.0389 (4)	0.0320 (3)	-0.0041 (3)	0.0022 (2)	0.0012 (2)

Geometric parameters (Å, °)

1.336 (4)	C2—C3	1.383 (4)
1.324 (4)	C2—C8	1.403 (4)
1.307 (4)	C2—P1	1.836 (3)
1.305 (5)	C3—C4	1.392 (4)
1.328 (6)	С3—Н31	0.930
1.290 (5)	C4—C5	1.387 (4)
0.930	C5—C6	1.492 (4)
0.930	С5—С7	1.380 (4)
0.930	C7—C8	1.385 (4)
0.930	C9—C10	1.394 (4)
0.930	C9—C15	1.386 (4)
0.930	C9—P1	1.836 (3)
0.930	C10—C11	1.386 (4)
1.533 (5)	C11—C12	1.383 (5)
1.850 (3)	C12—C13	1.499 (5)
0.960	C12—C14	1.367 (5)
	1.336 (4) 1.324 (4) 1.307 (4) 1.305 (5) 1.328 (6) 1.290 (5) 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 1.533 (5) 1.850 (3) 0.960	1.336(4) $C2-C3$ $1.324(4)$ $C2-C8$ $1.307(4)$ $C2-P1$ $1.305(5)$ $C3-C4$ $1.328(6)$ $C3-H31$ $1.290(5)$ $C4-C5$ 0.930 $C5-C6$ 0.930 $C5-C7$ 0.930 $C7-C8$ 0.930 $C9-C10$ 0.930 $C9-C15$ 0.930 $C9-P1$ 0.930 $C10-C11$ $1.533(5)$ $C11-C12$ $1.850(3)$ $C12-C13$ 0.960 $C12-C14$

C1—H12	0.960	C14—C15	1.389 (4)
C1 ⁱ —C1—P1	110.6 (2)	С7—С8—Н81	119.9
C1 ⁱ —C1—H11	109.3	C10—C9—C15	118.4 (3)
P1—C1—H11	109.2	C10-C9-P1	123.9 (2)
C1 ⁱ —C1—H12	109.1	C15—C9—P1	117.7 (2)
P1—C1—H12	109.2	С9—С10—Н101	119.3
H11—C1—H12	109.5	C9—C10—C11	120.5 (3)
C3—C2—C8	118.3 (2)	H101—C10—C11	120.2
C3—C2—P1	125.28 (19)	C10-C11-H111	120.6
C8—C2—P1	116.3 (2)	C10-C11-C12	120.0 (3)
C2—C3—C4	121.0 (2)	H111—C11—C12	119.4
С2—С3—Н31	119.5	C11—C12—C13	119.3 (3)
С4—С3—Н31	119.5	C11—C12—C14	120.3 (3)
C3—C4—H41	120.6	C13—C12—C14	120.4 (3)
C3—C4—C5	119.7 (3)	C12—C13—F5	112.9 (4)
H41—C4—C5	119.7	C12—C13—F4	113.4 (3)
C4—C5—C6	120.5 (3)	F5—C13—F4	103.3 (4)
C4—C5—C7	120.2 (2)	C12—C13—F6	113.0 (3)
C6—C5—C7	119.3 (3)	F5—C13—F6	106.4 (4)
C5—C6—F1	112.1 (3)	F4—C13—F6	107.0 (4)
C5—C6—F2	114.2 (3)	H141—C14—C12	119.8
F1—C6—F2	103.4 (3)	H141—C14—C15	120.4
C5—C6—F3	113.2 (3)	C12—C14—C15	119.8 (3)
F1—C6—F3	104.7 (3)	C14—C15—C9	121.0 (3)
F2—C6—F3	108.3 (3)	C14—C15—H151	119.9
С5—С7—Н71	119.8	С9—С15—Н151	119.1
C5—C7—C8	119.9 (3)	C1—P1—C2	102.20 (13)
H71—C7—C8	120.3	C1—P1—C9	99.93 (12)
C2—C8—C7	120.8 (3)	C2—P1—C9	100.83 (13)
C2—C8—H81	119.3		
C2—P1—C1—C1 ⁱ	174.53 (18)	C7—C5—C6—F2	160.7 (3)
C9—P1—C1—C1 ⁱ	71.1 (2)	C4—C5—C6—F3	-146.1 (3)
C2—P1—C9—C10	-25.8 (3)	C7—C5—C6—F1	-82.2 (3)
C1—P1—C2—C3	11.2 (3)	C7—C5—C6—F3	36.0 (4)
C9—P1—C2—C3	113.9 (2)	C5—C7—C8—C2	1.4 (5)
C1—P1—C2—C8	-171.8 (2)	P1-C9-C10-C11	-178.7 (2)
C9—P1—C2—C8	-69.1 (2)	C15—C9—C10—C11	0.4 (4)
C1—P1—C9—C15	-100.4 (2)	P1-C9-C15-C14	177.9 (2)
C1—P1—C9—C10	78.8 (3)	C10-C9-C15-C14	-1.3 (4)
C2—P1—C9—C15	155.1 (2)	C9—C10—C11—C12	0.5 (5)
$P1-C1-C1^{i}-P1^{i}$	179.98 (16)	C10-C11-C12-C13	-179.7 (4)
P1—C2—C3—C4	176.8 (2)	C10-C11-C12-C14	-0.6 (5)
C3—C2—C8—C7	-1.1 (4)	C11—C12—C13—F4	-47.9 (5)
C8—C2—C3—C4	-0.1 (4)	C11—C12—C13—F5	-165.0 (4)
P1—C2—C8—C7	-178.4 (2)	C11—C12—C13—F6	74.1 (5)
C2—C3—C4—C5	1.1 (4)	C14—C12—C13—F4	133.0 (4)
C3—C4—C5—C7	-0.8 (4)	C14—C12—C13—F5	15.8 (6)

supplementary materials

C3—C4—C5—C6	-178.7 (3)	C14—C12—C13—F6	-105.0 (5)
C4—C5—C6—F1	95.7 (4)	C11—C12—C14—C15	-0.3 (5)
C4—C5—C6—F2	-21.5 (4)	C13-C12-C14-C15	178.8 (3)
C4—C5—C7—C8	-0.4 (4)	C12—C14—C15—C9	1.3 (5)
C6—C5—C7—C8	177.5 (3)		

Symmetry codes: (i) -x+2, -y+2, -z.

Table 1

Comparison of structural parameters (Å, °) for R₂PCH₂CH₂PR₂

R	C-P-C	Σ C-P-C	P-C _{ethyl}	P-C _R
<i>p</i> -Ph-CF ₃ ^{<i>a</i>}	100.79, 102.15,99.96	302.90	1.854	1.838
Ph ^b	100.219,102.369,101.047	303.64	1.844	1.832
<i>p</i> -Ph-CH ₃ ^{<i>c</i>}	98.668,101.864,102.985	303.52	1.849	1.821
<i>p</i> -Ph-CH ₂ CH ₃ ^d	99.719,102.754,101.37	303.84	1.85	1.83
CH ₃ ^e	98.869,99.665,98.872	297.3	1.848	1.836
CH ₂ CH ₃ ^e	99.272,99.491,100.206	298.5	1.845	1.843
CH(CH ₃) ₂ ^e	101.184,100.805,102.235	304.2	1.86	1.86
C(CH ₃) ₃ ^f	100.990,103.197,110.350	314.5	1.86	1.89

Notes: (*a*) This work; (*b*) Tiekink (2001); (*c*) Zeller *et al.* (2003); (*d*) Zeller & Hunter (2004); (*e*) Bruckmann & Kruger (1997); (*f*) Eisentrager *et al.* (2003).

Fig. 1